Types of Diversity
Dissimilarities among communities arises from two different processes:
Beta Diversity Indices: Jaccard vs. Sorensen
Podani | Baslega | |
---|---|---|
Jaccard | \[Repl_J = \frac{2 \min(b, c)}{(a + b + c)}\] | \[Repl_{BJ} = \beta_{Jtu} = \frac{2 \min(b, c)}{a + 2 \min(b, c)}\] |
\[Rich_J = \frac{|b - c|}{(a + b + c)}\] | \[Nes_{BJ} = \beta_{jne} = DJ - \beta_{Jtu} = \frac{|b - c|}{a + b + c} \times \frac{a}{a + 2 \min(b, c)}\] | |
Sorensen | \[Repl_S = \frac{2 \min(b, c)}{(2a + b + c)}\] | \[Repl_{BS} = \beta_{Sim} = \frac{\min(b, c)}{a + \min(b, c)}\] |
\[Rich_S = \frac{|b - c|}{(2a + b + c)}\] | \[Nes_{BS} = \beta_{nes} = DS - \beta_{Sim} = \frac{|b - c|}{2a + b + c} \times \frac{a}{a + \min(b, c)}\] |
Key:
Let’s view the dataset! The Doubs Fish dataset contains fish taxa as columns, each of the 30 rows is a site, and the row value represents the amount of observations at that site.
data(doubs)
fish = doubs$fish
fish = fish[-8,] # Remove site 8 which has no observations for any fish.
head(fish[,1:14])
## Cogo Satr Phph Neba Thth Teso Chna Chto Lele Lece Baba Spbi Gogo Eslu
## 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 5 4 3 0 0 0 0 0 0 0 0 0 0
## 3 0 5 5 5 0 0 0 0 0 0 0 0 0 1
## 4 0 4 5 5 0 0 0 0 0 1 0 0 1 2
## 5 0 2 3 2 0 0 0 0 5 2 0 0 2 4
## 6 0 3 4 5 0 0 0 0 1 2 0 0 1 1
Each column is a species of fish, while each row is a site with the number of each species observed at that site.
Gamma diversity is essentially the total number of unique species across all sites.
# Calculate gamma diversity (total species richness across all sites)
gamma_diversity <- specnumber(colSums(fish))
# Display gamma diversity result
cat("Gamma Diversity (Total Species Richness):", gamma_diversity, "\n")
## Gamma Diversity (Total Species Richness): 27
Alpha diversity refers to the diversity within a particular area or ecosystem, and is typically expressed by the number of species (species richness) in that ecosystem.
# Calculate species richness (alpha diversity) for each site
alpha_diversity <- specnumber(fish)
# Calculate Shannon diversity index for each site
shannon_diversity <- diversity(fish, index = "shannon")
# Calculate Simpson diversity index for each site
simpson_diversity <- diversity(fish, index = "simpson")
# Display results
alpha_results <- data.frame(Site = rownames(fish),
Species_Richness = alpha_diversity,
Shannon_Index = shannon_diversity,
Simpson_Index = simpson_diversity)
print(alpha_results)
## Site Species_Richness Shannon_Index Simpson_Index
## 1 1 1 0.000000 0.0000000
## 2 2 3 1.077556 0.6527778
## 3 3 4 1.263741 0.7031250
## 4 4 8 1.882039 0.8253968
## 5 5 11 2.329070 0.8961938
## 6 6 10 2.108294 0.8571429
## 7 7 5 1.420116 0.7343750
## 9 9 5 1.432757 0.7346939
## 10 10 6 1.648847 0.7857143
## 11 11 6 1.594167 0.7603306
## 12 12 6 1.673142 0.7962963
## 13 13 6 1.705013 0.8033241
## 14 14 10 2.125904 0.8673469
## 15 15 11 2.322898 0.8962351
## 16 16 17 2.643290 0.9175000
## 17 17 22 2.941232 0.9400826
## 18 18 23 3.023328 0.9467120
## 19 19 23 2.962449 0.9395085
## 20 20 22 2.992018 0.9451531
## 21 21 23 3.038689 0.9479709
## 22 22 22 3.015832 0.9483025
## 23 23 3 1.039721 0.6250000
## 24 24 8 1.894312 0.8177778
## 25 25 8 1.972247 0.8429752
## 26 26 21 2.904931 0.9378042
## 27 27 22 2.952539 0.9428068
## 28 28 22 2.986392 0.9461224
## 29 29 26 3.144175 0.9538909
## 30 30 21 2.996777 0.9486176
We can utilize the beta.div.comp() function from the adespatial package in order to calculate fish replacement and richness difference components. This utilizes our fish species presence-absence data, and for this analysis we will be focusing on the Podani family of indices which includes the Jaccard and Sorensen dissimilarity coefficients and their quantitative forms.
# Calculate Beta Diversity Components for Jaccard
fish.bd.j = beta.div.comp(fish, coef = "J", quant = T)
# View Jaccard's Beta Diversity Components
fish.bd.j$part
## BDtotal Repl RichDif Repl/BDtotal RichDif/BDtotal
## 0.3770111 0.1414749 0.2355362 0.3752539 0.6247461
Jaccard’s Component Beta Diversity Interpretation
# Calculate Beta Diversity Components for Sorensen
fish.bd.s = beta.div.comp(fish, coef = "S", quant = T)
# View Sorensen's Beta Diversity Components
fish.bd.s$part
## BDtotal Repl RichDif Repl/BDtotal RichDif/BDtotal
## 0.3237960 0.1203572 0.2034388 0.3717068 0.6282932
Sorensen’s Component Beta Diversity Interpretation
Local Contributions to Beta Diversity narrows the scope from all sites, like in the previous calculation of Beta Diversity Components, to site specific contributions.
# Calculate Local Contribution to Beta Diversity for Jaccard
local.repl.j = LCBD.comp(fish.bd.j$repl, sqrt.D = T)
# View Jaccard's Local Replacement Contributions
local.repl.j
## $beta
## SStotal BDtotal
## 3.9612967 0.1414749
##
## $LCBD
## [1] -0.006412591 0.031057500 0.045826744 0.041488590 0.050099738
## [6] 0.033288092 0.038157146 0.062190531 0.036298246 0.029138579
## [11] 0.045281708 0.062168779 0.049345906 0.042641201 0.042421271
## [16] 0.032310835 0.034572053 0.032215076 0.024644628 0.022357400
## [21] 0.017866032 0.006678116 0.068538661 0.049834767 0.044771438
## [26] 0.027217645 0.022237378 0.001319271 0.012445261
# Calculate Jaccard's Local Richness Difference / Turnover Contributions
local.rich.j = LCBD.comp(fish.bd.j$rich, sqrt.D = T)
# View Jaccard's Local Richness Difference / Turnover Contributions
local.rich.j
## $beta
## SStotal BDtotal
## 6.5950132 0.2355362
##
## $LCBD
## [1] 0.08471002 0.03689583 0.02564589 0.02430854 0.02430643 0.02590333
## [7] 0.02669263 0.02994095 0.03192175 0.04130865 0.02413163 0.02188155
## [13] 0.02361610 0.02475546 0.02535543 0.02748067 0.02614698 0.02769883
## [19] 0.03182826 0.03395379 0.03931829 0.07649302 0.02911869 0.04087927
## [25] 0.02497104 0.03370123 0.03776519 0.05017985 0.04909067
# Calculate Sorensen's Local Replacement Contributions
local.repl.s = LCBD.comp(fish.bd.s$repl, sqrt.D = T)
# View Sorensen's Local Replacement Contributions
local.repl.s
## $beta
## SStotal BDtotal
## 3.3700008 0.1203572
##
## $LCBD
## [1] -0.001714649 0.035404519 0.047725546 0.038258992 0.044715682
## [6] 0.028114225 0.038277136 0.063242693 0.033338279 0.030989795
## [11] 0.046741511 0.065791821 0.050770890 0.040029554 0.036657017
## [16] 0.024921859 0.027294303 0.025612533 0.022755535 0.021960902
## [21] 0.018499105 0.012371688 0.078778104 0.057510394 0.046333699
## [26] 0.027675386 0.022676147 0.001344199 0.013923136
# Calculate Sorensen's Local Richness Difference / Turnover Contributions
local.rich.s = LCBD.comp(fish.bd.s$rich, sqrt.D = T)
# View Sorensen's Local Richness Difference / Turnover Contributions
local.rich.s
## $beta
## SStotal BDtotal
## 5.6962869 0.2034388
##
## $LCBD
## [1] 0.09507352 0.03703022 0.02624392 0.02225857 0.02151469 0.02225857
## [7] 0.02624392 0.03040469 0.03040469 0.04105238 0.02404728 0.02326592
## [13] 0.02162119 0.02143146 0.02261790 0.02400430 0.02313578 0.02519746
## [19] 0.03116836 0.03454923 0.04099183 0.08552391 0.02810169 0.04105238
## [25] 0.02351030 0.03515723 0.03965913 0.05062086 0.05185863
Site | Repl. LCBD | Repl. Impact | RD LCBD | RD Impact |
---|---|---|---|---|
1 | -0.006412591 | Low Impact | 0.08471002 | High Impact |
2 | 0.031057500 | Medium Impact | 0.03689583 | Medium Impact |
3 | 0.045826744 | Medium Impact | 0.02564589 | Medium Impact |
4 | 0.041488590 | Medium Impact | 0.02430854 | Medium Impact |
5 | 0.050099738 | High Impact | 0.02430643 | Medium Impact |
6 | 0.033288092 | Medium Impact | 0.02590333 | Medium Impact |
7 | 0.038157146 | Medium Impact | 0.02669263 | Medium Impact |
8 | 0.062190531 | High Impact | 0.02994095 | Medium Impact |
9 | 0.036298246 | Medium Impact | 0.03192175 | Medium Impact |
10 | 0.029138579 | Medium Impact | 0.04130865 | High Impact |
11 | 0.045281708 | Medium Impact | 0.02413163 | Medium Impact |
12 | 0.062168779 | High Impact | 0.02188155 | Medium Impact |
13 | 0.049345906 | Medium Impact | 0.02361610 | Medium Impact |
14 | 0.042641201 | Medium Impact | 0.02475546 | Medium Impact |
15 | 0.042421271 | Medium Impact | 0.02535543 | Medium Impact |
16 | 0.032310835 | Medium Impact | 0.02748067 | Medium Impact |
17 | 0.034572053 | Medium Impact | 0.02614698 | Medium Impact |
18 | 0.032215076 | Medium Impact | 0.02769883 | Medium Impact |
19 | 0.024644628 | Medium Impact | 0.03182826 | Medium Impact |
20 | 0.022357400 | Medium Impact | 0.03395379 | Medium Impact |
21 | 0.017866032 | Low Impact | 0.03931829 | High Impact |
22 | 0.006678116 | Low Impact | 0.07649302 | High Impact |
23 | 0.068538661 | High Impact | 0.02911869 | Medium Impact |
24 | 0.049834767 | Medium Impact | 0.04087927 | High Impact |
25 | 0.044771438 | Medium Impact | 0.02497104 | Medium Impact |
26 | 0.027217645 | Medium Impact | 0.03370123 | Medium Impact |
27 | 0.022237378 | Medium Impact | 0.03776519 | Medium Impact |
28 | 0.001319271 | Low Impact | 0.05017985 | High Impact |
29 | 0.012445261 | Low Impact | 0.04909067 | Medium Impact |
Site | Repl. LCBD | Repl. Impact | RD LCBD | RD Impact |
---|---|---|---|---|
1 | -0.001714649 | Low Impact | 0.09507352 | High Impact |
2 | 0.035404519 | Medium Impact | 0.03703022 | Medium Impact |
3 | 0.047725546 | Medium Impact | 0.02624392 | Medium Impact |
4 | 0.038258992 | Medium Impact | 0.02225857 | Medium Impact |
5 | 0.044715682 | Medium Impact | 0.02151469 | Medium Impact |
6 | 0.028114225 | Medium Impact | 0.02225857 | Medium Impact |
7 | 0.038277136 | Medium Impact | 0.02624392 | Medium Impact |
8 | 0.063242693 | High Impact | 0.03040469 | Medium Impact |
9 | 0.033338279 | Medium Impact | 0.03040469 | Medium Impact |
10 | 0.030989795 | Medium Impact | 0.04105238 | High Impact |
11 | 0.046741511 | Medium Impact | 0.02404728 | Medium Impact |
12 | 0.065791821 | High Impact | 0.02326592 | Medium Impact |
13 | 0.050770890 | High Impact | 0.02162119 | Medium Impact |
14 | 0.040029554 | Medium Impact | 0.02143146 | Medium Impact |
15 | 0.036657017 | Medium Impact | 0.02261790 | Medium Impact |
16 | 0.024921859 | Medium Impact | 0.02400430 | Medium Impact |
17 | 0.027294303 | Medium Impact | 0.02313578 | Medium Impact |
18 | 0.025612533 | Medium Impact | 0.02519746 | Medium Impact |
19 | 0.022755535 | Medium Impact | 0.03116836 | Medium Impact |
20 | 0.021960902 | Medium Impact | 0.03454923 | High Impact |
21 | 0.018499105 | Low Impact | 0.04099183 | High Impact |
22 | 0.012371688 | Low Impact | 0.08552391 | High Impact |
23 | 0.078778104 | High Impact | 0.02810169 | Medium Impact |
24 | 0.057510394 | High Impact | 0.04105238 | High Impact |
25 | 0.046333699 | Medium Impact | 0.02351030 | Medium Impact |
26 | 0.027675386 | Medium Impact | 0.03515723 | High Impact |
27 | 0.022676147 | Medium Impact | 0.03965913 | High Impact |
28 | 0.001344199 | Low Impact | 0.05062086 | High Impact |
29 | 0.013923136 | Low Impact | 0.05185863 | High Impact |
# Calculate Species Contribution to Beta Diversity
SCBD = beta.div(fish, method = "hellinger")
# View Species Contribution to Beta Diversity
SCBD
## $beta
## SStotal BDtotal
## 14.0702872 0.5025103
##
## $SCBD
## Cogo Satr Phph Neba Thth Teso Chna
## 0.03179477 0.14229130 0.09491247 0.07129053 0.03367740 0.03031386 0.01535243
## Chto Lele Lece Baba Spbi Gogo Eslu
## 0.02335210 0.03448797 0.03534994 0.02901233 0.02093510 0.03134639 0.02722712
## Pefl Rham Legi Scer Cyca Titi Abbr
## 0.02705394 0.02321227 0.02060750 0.01900080 0.01654732 0.02923874 0.01899880
## Icme Acce Ruru Blbj Alal Anan
## 0.01330308 0.03326809 0.05494183 0.02410392 0.07964366 0.01873634
##
## $LCBD
## 1 2 3 4 5 6 7
## 0.07252040 0.04446478 0.04104101 0.02797626 0.02645407 0.01997878 0.03448857
## 9 10 11 12 13 14 15
## 0.04090284 0.03092578 0.03935674 0.03897281 0.04773390 0.03469917 0.02892282
## 16 17 18 19 20 21 22
## 0.02303320 0.01719880 0.01606821 0.01941901 0.02358674 0.02622679 0.03032694
## 23 24 25 26 27 28 29
## 0.06155305 0.05241202 0.04756547 0.03046571 0.03078689 0.03168996 0.02372550
## 30
## 0.03750379
##
## $p.LCBD
## 1 2 3 4 5 6 7 9 10 11 12 13 14
## 0.001 0.092 0.166 0.862 0.907 0.998 0.523 0.195 0.686 0.237 0.217 0.032 0.399
## 15 16 17 18 19 20 21 22 23 24 25 26 27
## 0.758 0.967 1.000 1.000 0.998 0.967 0.907 0.710 0.001 0.012 0.036 0.695 0.669
## 28 29 30
## 0.630 0.967 0.311
##
## $p.adj
## 1 2 3 4 5 6 7 9 10 11 12 13 14
## 0.029 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.832 1.000
## 15 16 17 18 19 20 21 22 23 24 25 26 27
## 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.029 0.324 0.900 1.000 1.000
## 28 29 30
## 1.000 1.000 1.000
##
## $method
## [1] "hellinger" NA
##
## $note
## [1] "Info -- This coefficient is Euclidean"
##
## $D
## [1] NA
##
## attr(,"class")
## [1] "beta.div"
Species | SCBD | Impact |
---|---|---|
Cogo | 0.03179477 | Medium Impact |
Satr | 0.14229130 | High Impact |
Phph | 0.09491247 | High Impact |
Neba | 0.07129053 | High Impact |
Thth | 0.03367740 | Medium Impact |
Teso | 0.03031386 | Medium Impact |
Chna | 0.01535243 | Low Impact |
Chto | 0.02335210 | Medium Impact |
Lele | 0.03448797 | Medium Impact |
Lece | 0.03534994 | Medium Impact |
Baba | 0.02901233 | Medium Impact |
Spbi | 0.02093510 | Low Impact |
Gogo | 0.03134639 | Medium Impact |
Eslu | 0.02722712 | Medium Impact |
Pefl | 0.02705394 | Medium Impact |
Rham | 0.02321227 | Medium Impact |
Legi | 0.02060750 | Low Impact |
Scer | 0.01900080 | Low Impact |
Cyca | 0.01654732 | Low Impact |
Titi | 0.02923874 | Medium Impact |
Abbr | 0.01899880 | Low Impact |
Icme | 0.01330308 | Low Impact |
Acce | 0.03326809 | Medium Impact |
Ruru | 0.05494183 | High Impact |
Blbj | 0.02410392 | Medium Impact |
Alal | 0.07964366 | High Impact |
Anan | 0.01873634 | Low Impact |